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Why food recognition?

180M #tood
90/minute

"Camera eats first"

54% take picture
39% post it




Why is the food recognition a challenge?
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Motivation

Food Analysis Problems

4 )

® Intra-class variability

Ingredients < >

® Inter-class similarity

- _/

) 4¥ = &
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2 . -~ AN ‘
Inter-class similarity example: Tomato sauce and Curry sauce.
Image source: Recipes5k

Decreasement in Precision



http://www.ub.edu/cvub/recipes5k/
http://www.ub.edu/cvub/recipes5k/

Are we able to recognize
thousands of dishes?

e 79% on UECFOOD
e 44% on ChinaFood1000

* How to achieve scalability?
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Food Analysis as a Multi-task
Problem

Cuisine: French.
Categories: Meat.

Ingredients: salt, oll,
- onion, garlic, black
pepper, tomato,
' cloves, parsley,
thyme, bay, white
wine, clove, duck, fat,
mutton.

Dish: Confit de canard.

Learning multiple objectives from a
shared representation

- Efficiency and prediction accuracy.

Crucial importance in systems where
long computation run-time is
prohibitive
- Combining all tasks reduces
computation.

Inductive knowledge transfer

- Generalization by sharing the domain
information between complimentary tasks.

09:41 @



Transfer Learning

Fine-tunning

D

(“&Q

S

A

@@ ®

Cheesecake

A®

&

Multi-task learning

ﬁ
®
} Task1: Y
. |.- Cheesecake
Cuisine: French. %
. D b
Categories: Meat.
Ingredients: salt, oil, i 3
It i —— Task2
onion, garlic, black 5 4 B Amencan s
2w, pepper, tomato, %“ = B |§ .......
cloves, parsley, & b’
- thyme, bay, white
wine, clove, duck, fat,
mutton. Task3: -
Dessert

Dish: Confit de canard.

19:42 @9



Multi-task FAQ

How should one pick the right architecture for multi-task learning?

Does it depend on the final tasks?

Should we have a completely shared representation between
tasks?

Or should we have a combination of shared and task-specific
representations?

Is there a principled way of answering these questions?



Food Recognition as a MTL

v

Cuisine: Vietnamese.

Categories:  Meat,
Noodle/Pasta.

Ingredients: pork, oil,
lemon, herbs, fresno
chiles, chili, noodles,
salt.

Dish: Cao Lau.

® 09:42 @



How to define the
importance of each task?

e Weighted uniformly the losses.

e Manually tuned the losses.

e Dynamic weighted of the losses.

o The main task is fixed and weights are learned for each side-task ([1]).
o Weight the tasks according to the homoscedastic uncertainty ([2]).

[1] X. Yin and X. Liu. Multi-task convolutional neural network for face recognition.
[2] A. Kendall, Y. Gal, and R. Cipolla. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics.
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But many unanswered questions...

Why doesn’t my model work?
-> Why does my model work?

We don’t understand many of
the tools that we use...

O E.g. stochastic reg. techniques (dropout)
are used in most deep learning models to
avoid over-fitting. Why do they work?

What does my model know?

° From Gal’16

19:42 @14



But many unanswered questions...

Why does my model work?
What does my model know?
Why does my model predict this and not that?

Our models are black boxes and not interpretable...

Physicians and others need to understand why a model
predicts an output.

° Gal’'l16 19:42 ®15



Uncertainty in ML

- For Computer scientists, computers and algorithms are
deterministic.

“Many branches of computer science deal mostly with entities that are entirely
deterministic and certain.

Given that many computer scientists work in a relatively clean and certain environment,
it can be surprising that machine learning makes heavy use of probability theory.”

- The reason that the answers are unknown is because of
uncertainty.

- The solution is to systematically evaluate different solutions until
a good or good-enough set of features and/or algorithm is
discovered for a specific prediction problem.

° https://machinelearningmastery.com/uncertainty-in-machine-learning/ °



Noise in observations

Noise refers to variability or randomness in the observation.

The real world, and in turn, real data, is messy or imperfect.

o As practitioners, we must remain skeptical of the data
and develop systems to expect and even harness this
uncertainty.

https://machinelearningmastery.com/uncertainty-in-machine-learning/



Incomplete Coverage of the Domain

In statistics, a random sample refers to a collection of
observations chosen from the domain without
systematic bias.

o However, there will always be some bias.

A suitable level of variance and bias in the sample is
required such that the sample is representative of the
task or project for which the data or model will be used.

- Often, we have little control over the sampling
process.

° https://machinelearningmastery.com/uncertainty-in-machine-learning/



Incomplete Coverage of the Domain

In all cases, we will never have all of the observations. If
we did, a predictive model would not be required.

This is why we split a dataset into train and test sets or
use resampling methods like k-fold cross-validation.

o We do this to handle the uncertainty in the
representativeness of our dataset and estimate the

performance of a modelling procedure on data not used in
that procedure.

° https://machinelearningmastery.com/uncertainty-in-machine-learning/ °



Imperfect Model of the Problem

This is often summarized as “all models are wrong,” or more
completely in an aphorism by George Box:

“All models are wrong but some are useful”

This does not apply just to the model, the artifact, but the
whole procedure used to prepare it, including the choice
and preparation of data, choice of training hyperparameters,
and the interpretation of model predictions.

https://machinelearningmastery.com/uncertainty-in-machine-learning/



Imperfect Model of the Problem

Another type of error is an error of omission.

“In many cases, it is more practical to use a simple but
uncertain rule rather than a complex but certain one, even if

the true rule is deterministic and our modeling system has the
fidelity to accommodate a complex rule.”

- Given we know that the models will make errors, we handle
this uncertainty by seeking a model that is good enough.

O This often is interpreted as selecting a model that is skillful as compared to a naive
method or other established learning models, e.g. good relative performance.

https://machinelearningmastery.com/uncertainty-in-machine-learning/



How to manage Uncertainty

Probability is the field of mathematics designed to handle,
manipulate, and harness uncertainty.

In terms of noisy observations, probability and statistics help us to
understand and quantify the expected value, the variability of
variables in our observations from the domain.

In terms of the incomplete coverage of the domain, probability
helps to understand and quantify the expected distribution and
density of observations in the domain.

In terms of model error, probability helps to understand and
qguantify the expected capability and variance in performance of
our predictive models when applied to new data.

https://machinelearningmastery.com/uncertainty-in-machine-learning/ °



Why uncertainty is important?

Fatal accident of Tesla, May, 2016.




Why uncertainty is important?

Graduation

Google Photos
[ ) 19:42 @24



Model uncertainty

1. Given a model trained with several pictures of fruits, a user
asks the model to decide what is the object using a photo of a
chocolate cake.

Who is the guilty for this?

) Adapted from Gal (2016) 09:42 @



Model uncertainty

2. We have different types of images to classify fruits, where one
of the category comes with a lot of clutter/noise/occlusions.

° Adapted from Gal (2016) 09:42 ®



Model uncertainty

3. What is the best model parameters that best explain a given
dataset? What model structure should we use?

" X
gl 8 g
a % a a s
%
Size Size Size
6o + 012 0o + 61z + 6222 0o + 012 + 0222 + 032° + 042

Gal (2016)

) 09:42 @



Model uncertainty




Noisy labels

Noisy labels: with
supervised learning we
use labels to train the
models.

If the labels are noisy, the
uncertainty increases.




Aleatoric — captures the noise inherent in the observations

Types of uncertainty in
Bayesian modeling

heteroscedastic — data-dependent

homoscedastic — constant for different data points,

but can be task-dependent.

Epistemic — model uncertainty

Can be explained away given enough data
Uncertainty about the model parameters

Uncertainty about the model structure

Price

Size
bo + 012 + 92.’!32 -+ 03223 + 042

09:42 @



Food Recognition as a MTL

Aleatoric uncertainty — How to model it?

—»| Cat.

Cuisine: Vietnamese.

Categories:  Meat,
Noodle/Pasta.

Ingredients: pork, oil, p—
z —> lemon, herbs, fresno Lt Otal z a)iL l-
I

“—( Ing. .

chiles, chili, noodles,
salt.

Dish: Cao Lau.

......

How to determine the total loss of the MTF?

- Expensive to learn & Affects the performance and the efficiency.

Use aleatoric uncertainty modeling to make the model smarter!

) 09:42 @



Food Recognition as a MTL

Aleatoric uncertainty — How to model it?

.....

Cuisine: Vietnamese.

Categories:  Meat,
Noodle/Pasta.

Ingredients: pork, oil, p—
z —> lemon, herbs, fresno Lt Otal z a)iL l-
I

chiles, chili, noodles,
salt.

Dish: Cao Lau.

......

Let us consider a neural network defined on T tasks with model output y/and parameters
W. Factorizing the output and assuming a Gaussian distribution. we gey.

T T
p(yr-yrlfY (@) = [Tpwilf” (@) = [I N £ (2),07)
i=1

i=1
Note that o is a model’s observation noise parameter
(]

09:42 @



Multi-task uncertainty-based likelihood

In maximum likelihood inference, we maximize the log likelihood of the model:

L(‘/Va a, '“10) —— logp(ylayrlf“,(‘r))

Kendal et.al. (Kendal’2016) showed that:

L(W,0,...,0) = —logp(yy,..yr|f" (z)) ~

* Proved that the formula can be extended for the binary cross
entropy too (multi-label problems).

Eduardo Aguilar, Marc Bolafios, Petia Radeva: Regularized uncertainty-based multi-task learning model for food
analysR. J. Visual Communication and Image Representation 60: 360-370 (2019) 19:42 @



The MTL algorithm

Train the model

Not

Estimate the loss Check if the loss

L converged.

Update the noise
estimation O @

Eduardo Aguilar, Marc Bolafios, Petia Radeva: Regularized uncertainty-based multi-task learning model for food
analysR. J. Visual Communication and Image Representation 60: 360-370 (2019) 19:42 @ 34



Validation




Our Food Dataset

 Food - 550 dishes, 11 categories, 11 cuisines
* Ingredients — 65

e Drinks —40
Chinese Indian
In total:
American French Turkish
more than : .
550.000 images

Eduardo Aguilar, Marc Bolafios, Petia Radeva: Regularized uncertainty-based multi-task learning model for food
analysR. J. Visual Communication and Image Representation 60: 360-370 (2019) 09:42 @



MAFood Data

4500 Distribution of Categories in MAFood-110 5500 Distribution of Cuisines in MAFood-110
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Dataset available at: www.ub.edu/cvub/dataset

Eduardo Aguilar, Marc Bolafos, Petia Radeva: Regularized uncertainty-based multi-task learning model for food
analysm®. J. Visual Communication and Image Representation 60: 360-370 (2019) 1



Results

GT

RUMTL

Single-task

Dish: tacos
Cuisine: mexican

Categories: vegetable, meat, bread

GT

Dish: tacos
Cuisine: mexican

Categories: vegetable, bread

RUMTL

Dish: prime_rib
Cuisine: american

Categories: vegetable, meat

Single-task

Dish: eggs_benedict
Cuisine: american

Categories: vegetable, bread, egg

GT

Dish: eggs_benedict
Cuisine: american

Categories: vegetable, bread, egg

RUMTL

Dish: ravioli
Cuisine: italian
Categories: vegetable, egg

Single-task

Dish: sushi
Cuisine: japanese

Categories: vegetable, seafood, rice

Dish: sushi
Cuisine: japanese

Categories: seafood, rice

Dish: cha_ca
Cuisine: japanese

Categories: fried_food

|
GT RUMTL Single-task

Dish: ravioli Dish: bruschetta Dish: lobster_roll_sandwich

Cuisine: italian Cuisine: italian Cuisine: italian

Categories: dumpling Categories: vegetable, bread Categories: vegetable, meat, bread

Eduardo Aguilar, Marc Bolafios, Petia Radeva: Regularized uncertainty-based multi-task learning model for food
analysR. J. Visual Communication and Image Representation 60: 360-370 (2019) 15:42 @38



Food ingredients recognition

Dish: prime_rib Dish: caesar_salad Dish: chicken_curry
Prediction: 'salt','sugar','vegetable
Prediction: 'salt','extra-virgin olive oil','dijon  oil','ground black pepper','yellow onion','com
mustard','freshly ground black pepper','red starch','garlic cloves', fresh ginger','frozen
wine vinegar','dried mixed herbs','toasted pine  peas','chopped fresh cilantro','boneless
nuts','beets','gorgonzola’,'baby spinach’,  skinless chicken breasts','low sodium chicken
broth','greek yogurt','curry powder’,

Prediction: 'olive oil', kosher salt','minced
gariic','thyme’,'peppercorns','rosemary’, rib-
eye roast',

GT: 'salt','sugar','vegetable oil','ground black
>','pepper’,'dijon pepper','yellow onion','com starch','garlic
cloves', fresh ginger', frozen peas','chopped

fresh cilantro','boneless skinless chicken
breasts','low sodium chicken broth','greek
yogurt','curry powder’,

GT: ‘olive oil','kosher salt','minced
gariic','thyme’,'peppercorns', rosemary’,'rib-
eye roast',

mustard'
ce','rom

(.J) LogMeal Api bemo

Chosen Image

Try with example

Ea

Food category and class recognition

Food Group Dish

Vegetable Fruit Beet Salad
AN RT WMWY
Dessert Cheesecake

Meat Panna Cotta

Salad With Seeds

Fole Gras

Q


http://logmeal.ml/logmeal/

Neurons’ Activations

Ingredient activation: butter

Dish: creme  Dish: creme  Dish: creme  Dish: creme Dish: spring  Dish: creme Dish: french
Dish: scallops Dish: cannoli  Dish: cannoli
brulee brulee brulee brulee rolls brulee onion soup

Ingredient activation: granulated sugar

[~ . |

Dish: Dish: creme  Dish: creme Dish: Dish: creme  Dish: creme Dish: Dish: ¢ Dish: Dish: creme
sh: tacos
bibimbap brulee brulee macarons brulee brulee macarons macarons brulee
Ingredient activation: mayonnaise

Dish: Dish: Dish: Dish: Dish: beet Dish: hot do Dish: carrot  Dish: chicken Dish: Dish: carrot
hamburger hamburger hamburger hamburger salad ' 9 cake curry hamburger cake




Food ingredients recognition

Dish  Cuisine Categories Ingredients

Acc Acc F Pre  Rec F, Pre Ree MTA
Single-task | 0.8334 | 0.8649 | 08709 0.8944 0(.8485 | 0.8992 09143 08846 | 06713
MTL 0.8303 | 0.8958 | 08811 09042 08592 | 08780 08972 0859 | 0.6927
RMTL 0.8351 | 08917 | 08834 08789 0.8880 | 0.8809 08613 09014 | 07061
UMTL 0.8221 | 08944 | 08925 09067 08788 | 0.89%43 09095 08795 | 07478
RUMTL | 0.8358 | 0.8934 | 08944 09041 08848 | 0.8988 09084 05393 | 0760

Multi-task Accuracy: encourage errors to concentrate on the same data.

W Sngle-task
000 { mw MM
. RMTL
§m4-m

. RUMTL
510004

%0 1

B2 0204 0406 0608 0810 0 ] ) 3 :
MTA #Tasks well recognized



Contents

* The food image problem
* Multi-task food learning with aleatoric uncertainty
* Food recognition with epistemic uncertainty

e - GAN
e - Hierarchical classifier with epistemic ucnertainty

e Conclusions



Bayesian neural networks

Instead of learning the model’s

weights,
learn a distribution over the
weights

e => estimate uncertainty over
the weights.

e So how do we do that?




Bayesian Neural Networks

At inference, instead of taking the single set of weights that maximized the

posterior distribution, we consider all possible weights, weighted by their
probability.

POz, X, ¥) = / polx, Wip(wIX, F)dw

* p(y|x,w)is the likelihood,

 p(w|X,Y)is the posterior probability of the model’s weights given the
data.

o 19:42 @44



Bayesian Neural Networks

But, how to compute the posterior probability of the model’s weights,
p(w[X,Y)?

POz, X, ¥) = / polx, Wip(wWIX, ¥)dw

VARIATIONAL INFERENCE SAMPLING METHODS
HIGH BIAS - LOW VARIANCE HIGH VARIANCE - LOW BIAS

all distributions

@ =




How to estimate the
Epistemic Uncertainty?

Gal and Ghahramani showed that dropout at inference time
gives an uncertainty estimator:

1. Infer y|x multiple times, each time sample a different set of
nodes to drop out.

2. Average the predictions to get the final prediction E(y|x).

3. Calculate the sample variance of the predictions.

ONONOF OO
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How to estimate the
Epistemic Uncertainty?

The Epistemic Uncertainty (EU) can be expressed as follows:

.
where EU(xy) = = Y p(e = Yeloe) In(p(ye = delo)),

c=]

K Monte Carlo dropout simulations

K

- | , .

P(Zlc - yclm) = K Zp(yf = yHJ)
k=1



Class uncertainty

What to do with the difficult clases?

Are all clases well represented/easily discriminable?

Adapted from Gal (2016)

How to augment difficult clases?
2 - data augmentation 09:42 ®



Use Uncertainty for Data
Augmentation

Brightness Color Contrast Sharpness All

Original




Use Uncertainty for Data
Augmentation

Sample of the synthetic images from the generator applied.



Class uncertainty

What to do with the difficult clases?

Are all clases well represented/easily discriminable?

Adapted from Gal (2016)

How to augment difficult clases?
- classic data augmentation, or
- creating synthetic images. How?

09:42 @



The Biggest Breakthrough In
The History Of Al

- Celebrated computer scientist Yann Lecun observed:

“GANs and the variations that are now being proposed is the most
interesting idea in the last 10 years in ML, in my opinion.”

VP and Chief Al Scientist, Facebook
Silver Professor of Computer Science, Data Science, Neural

Science, and Electrical and Computer Engineering, New
York University.

ACM Turing Award Laureate, (sounds like I'm bragging, but
a condition of accepting the award is to write this next to you

name)
Member, National Academy of Engineering



http://www.nyu.edu/

Generative Adversarial
Network (GAN)

Generator :
"N

Stride 2

New components:
Transposed convolution,
Batch Normalization

3 \
A
\“ ! ”II,

=

vy

W\

\ gl /l

Discriminator

P(x)

Binary Classifier:
Conv, Leaky RelU,
FC, Sigmoid

https://github.com/PramodShenoy/GANerations



GAN

Loss function for D
I If xisreal, D(x) = 1; otherwise, D(x) =0
| Minimize the error

Lp=E,InD(x)+E,In(1=D(G(2)))

~ Y
Real Fake
D(x) = 1 Dix) -+ 0
== [n D{x) ~ 0 =in(1-D0(x))~0

| Loss function for G
| Maximize the error of D

| Minimax procedure min max E, InD(x) +E, In (1—D(G(2)))



Use Uncertainty for Data
Augmentation

HARD SAMPLE DISCOVERY

Training Phase 1

Images

» | CNN

Prediction Phase 1

Image1

»

Image1

CNN Epistemic Uncertainty |
image9 2.14 |
: image 1 1.98
imageb 1.90
CNN |

IMAGE GENERATION

Synthetic Image Generation

SINGAN

SINGAN

SINGAN

FINAL TRAINING

Training Phase 2

Images

»| CNN

Synthetic
Images

Use the data augmentation applied class-conditionally to improve the results in terms of accuracy
and also to reduce the overall epistemic uncertainty.

During the prediction phase, the same image is fed to the CNN several times to calculate the
epistemic uncertainty given by the model for that image

3

(14




Validation




SINGAN

8

20

=

oL

£ )

= |

s m_’: GN

= ZN - TN TN T PR
Mult-scale Patch L Mult-scale Patch Effective

Generator Discriminator Patch Size

SinGAN’s multi-scale pipeline: the model consists of a pyramid of GANs, where both training and
inference are done in a coarse-to-fine fashion. At each scale, Gn learns to generate image samples in
which all the overlapping patches cannot be distinguished from the patches in the down-sampled
training image, xn, by the discriminator Dn; the effective patch size decreases as one goes up the
pyramid (marked in yellow on the original image for illustration). The input to Gn is a random noise

image zn, and the generated image from the previous scale ¥xn, upsampled to the current resolution
(except for the coarsest level which is purely generative).

Shaham, Tamar Rott, Tali Dekel, and Tomer Michaeli. "Singan: Learning a generative model from a single
natural image." Proceedings of the IEEE International Conference on Computer Vision. 2019. °



Use Uncertainty for Data
Augmentatlon

Original Images

Synthetic image generated on the selected images from the training set



AttentionGAN

AttentionGAN: Unpaired Image-to-Image Translation using
Attention-Guided Generative Adversarial Networks

Hao Tang, Hong Liu, Dan Xu, Philip H.S. Torr and Nicu Sebe

——————————————————————— > (Cycle-Consistency Logs [€&— == = == == —im = =i mim i i

Generated G() Attention Mask A,
C

Attention-Guided
Generator

F

Attention-Guided
Generator

—> —>

Recovered F'(G(x)

Framework of the proposed attention-guided generation scheme |, which contains two attention-guided generators
G and F. One mapping is shown: x->G(x)->F(G(x))->x. The other mapping is: y->F(y)->G(F(y))->y. The attention-guided
generators have a built-in attention module, which can perceive the most discriminative content between the source and

target domains. The input image, the content mask and the attention mask are fused to synthesize the final result.
° °



Using AttentionGan

|- a

Chen,&inyuan, et al. "Attention-GAN for object transfiguration in wild images." Proceedings of the European Confegence on
Computer Vision (ECCV). 2018.



Use Uncertainty for Data
Augmentation

Number of synthetic images generated for each real image.

2000 - . 0
-1
1750 - = 2
- 3
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_. 1250 - - Histogram for the entropy of the predicted images
& 1000 -
v
" 1000
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500 800
250 - §
3 600
0- o
am ch fr gr in it ja me th tu vi e
Synthetic images 400
Number of synthetic images generated .
after the third training cycle.
0 |l T
0.0 0.5 1.0 1.5 2.0

Entropy

Histogram for the entropy of the
g predicted images



Use Uncertainty for Data

Augmentation

1,00 g :
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_ Training images vs epistemic uncertainty N
E. Aguilar, and P. Radeva. "Uncertainty-aware Integration of Local and Flat Classifiers forFood

Recognition." Pattern Recognition Letters, 2020.



Use Uncertainty for Data
Augmentation

Model

NEU

Results on Food-101 in terms of Acc
and NEU for the models trained with
different data augmentation
techniques.

Results on UECFOOD-256 in terms of Acc
ResNet50 61.000/0 30.22°/o and NEU for the models trained with

ResNet50+DA 65.02% | 33.55% different data augmentation techniques.
ResNetb0+DA+A | 64.65% | 36.53%
Proposed method | 65.54% | 33,51%

Model Acc NEU

ResNet50 77 .66% 19.85%
ResNetb0+DA 82.65% 27.35%
ResNetb0+DA+A 82.54% 29.45%
Proposed method | 82.82% | 26.25%




Use Uncertainty for Data

Augmentation

Dataset ResNet50 (51) | ResNet50 (S;) | ResNet50 (S3) | ResNet50 (54)
American 81,99% 83,69% 84,10% 84,26%
Chinese 87,93% 90,05% 90,60% 91,17%
French 89,01% 90,33% 94,12% 92,54%
Greek 89,12% 89,34% 89,90% 92,11%
Indian 87,67% 92,96% 93,29% 92.,41%
Italian 80,72% 82,44% 84,31% 84,07%
Japanese 88,08% 90,85% 91,20% 90,93%
Mexican 79,12% 80,37% 81,64% 81,96%
Thai 70,98% 79,91% 79,85% 79,22%
Turkish 91,44% 91,65% 91,92% 92,15%
Vietnamese 84,67% 86,99% 88,14% 89,85%

Results obtained on the test sets in terms of Rmacro

1

Rinacro (yr 9) — |C| Z Riicro (ycx 3?}:)
geEC




How many dishes there are
all over the world?

More than
100.000 basic
8 CH foods
AN
WIKIPEDIA

The Free Encyclopedia



Imagine

. When you visit
Mexico,

what is the
probability to eat a
food from Norway?




Let’s organize classes in
meta-classes

Portugal Turkey Ghana

!




Let’s organize classes in
meta-classes

Flat Classifier Approach Local Classifier Per Parent Node Approach




But .... Hierarchical classifiers
have a big problem

Local Classifier Per Parent Node Approach

B e — ———

‘ Houston,
{ We Have
gl a Problem

Error propagation

Hypothesis: use uncertainty to decide if a LPN should be used



Proposed Method

K Image1

A wd »»( ArgMax }
g\ A1 wd *@
1 5 G
L+ AN_wd

r |
'Labels (A),
I
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B_wod

Yes 7
/
/
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Validation




MAFood Data - Ingredients101

BabpB&dk®Ribs

Dataset complementary to Food101:

101 classes / dishes

1000 images per class
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Ingredients: ‘barbecue sauce', ‘baby back

Ingredients: ‘salt’, ‘butter’, "all-purpose flour’,

ribs', ‘chips', ‘barbecue rub',

'large eggs', 'vanilla extract', 'baking powder',

‘carrots’, ‘granulated sugar', 'powdered
sugar', 'baking soda', ‘brown sugar', ‘ground

cinnamon', ‘canola oil', ‘cream cheese', ‘sour

A total of 279 different ingredients were considered,

cream', ‘ground nutmeg', ‘chopped pecans',

‘unsweetened applesauce’,

with an average of 19 per dish.

visible or not,

Distribution of Ingredients in MAFood-110 (top 100)
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Ablation study

pred wd+
pred wod + ey,
Hierarchical with 817 pred wod + eu; 8162
8l constraints; 81,62 8155
Flat; 81,37 816
815 815
pred wd + eu;
814 -
8l y 81,27
Hierarchical w . A
805 IEAICIKI WO ed wod; 81,11
constraints; 79,96 812 | prec_wod, 5.,
80 811
81
P 809
79 808
Hierarchical wo Flat Hiararchical with pred wd+  pred wdteu pred wod4eu  pred wd+
corstraints corstraints pred_wod pred_wod +eu



Results - Samples of the Smallest and
Largest EU within the same class of Dish




Conclusions

 Food image world brings us huge amount of data and Computer Vision questions
* Transfer learning and its subproblems (multi-task learning) open new opportunities

* Uncertainty modeling is a hot topic with many open questions and challenges!
Exclusivity relation between elements helps to the classification

Epistemic uncertainty

New method for robust hierarchical classifiers..
A good cue to improve recognition scalability.
Epistemic uncertainty useful beyond the confidence of the model.

Aleatoric uncertainty
Allows to weight different tasks according to uncertainty

For first time a food ontology is integrated into an end-to-end model

A huge impact of food analysis is expected from point of view of:
* Science, but also

 Real world applications, specially important for the society.
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