3D Scene Understanding from an Image

Vincent Lepetit ENPC ParisTech

Applications

- Augmented/Virtual Reality
- Robotics

Challenges

- 2D-3D information loss
- Appearance variation
- Pose ambiguities & symmetries
- Scarce training data
- Uncontrolled ("in the wild") scenarios
- . . .

3D Pose Estimation and 3D Model Retrieval for Objects in the Wild. Alexander Grabner, Peter M. Roth, and Vincent Lepetit. CVPR 2018.

Object Detection

Integrate the pose estimation into Mask R-CNN

2D bounding boxes from Mask-RCNN

3D pose of the object's bounding box

3D pose

3D pose of the object's bounding box

3D pose

Minimization of the Reprojection Error

3D Geometry Retrieval for Object Categories

Location Field Descriptors: Single Image 3D Model Retrieval in the Wild. Alexander Grabner, Peter M. Roth, and Vincent Lepetit. 3DV 2019.

3D Model Retrieval for Object Categories

Possible options: Predicting a point cloud, voxels, 3D planes, ...

We look for a man-made 3D model similar to the object.

ShapeNet [Chang et al, 2015]

Pose Invariant Embeddings & Metric Learning

Location Fields/Object Coordinates/..

For each pixel: the 3D coordinates on the object's surface, in the object's coordinate system:

Pose Invariant Embeddings & Metric Learning

Pose Invariant Embeddings & Metric Learning

Predicted Location Fields

Ground Truth

Results on Pix3D [Sun et al, 2018]

Limitation

3D Pose Refinement

initial 3D pose

refined 3D pose

Geometric Correspondence Fields: Learned 3D Pose Refinement in the Wild. A. Grabner et al., ECCV 2020

Refinement Strategies

Option #1: Compare images and renderings to predict 3D pose updates. Pose Estimate

BB8: A Scalable, Accurate, Robust to Partial Occlusion Method for Predicting the 3D Poses of Challenging Objects without Using Depth. Mahdi Rad and Vincent Lepetit. ICCV 2017.

Option #2: Make a renderer differentiable and compute analytic 3D pose gradients.

Our Refinement Objective

Consider the geometric reprojection error:

$$e(\mathcal{P}) = \frac{1}{2} \sum_{i} \|\operatorname{proj}(\mathbf{M}_{i}, \mathcal{P}_{gt}) - \operatorname{proj}(\mathbf{M}_{i}, \mathcal{P})\|_{2}^{2}$$

estimated 3D pose ground truth 3D pose

Gradient with respect to the 3D pose:

$$\begin{pmatrix} \frac{\partial e(\mathcal{P})}{\partial \mathcal{P}} \end{pmatrix} (\mathcal{P}_{curr}) = \sum_{i} \begin{bmatrix} \frac{\partial \operatorname{proj}(\mathbf{M}_{i}, \mathcal{P})}{\partial \mathcal{P}} \end{bmatrix}^{T} \left(\operatorname{proj}(\mathbf{M}_{i}, \mathcal{P}_{gt}) - \operatorname{proj}(\mathbf{M}_{i}, \mathcal{P}_{curr}) \right)$$
analytic unknown

Our Refinement Objective

Consider the geometric reprojection error:

$$e(\mathcal{P}) = \frac{1}{2} \sum_{i} \|\operatorname{proj}(\mathbf{M}_{i}, \mathcal{P}_{\mathrm{gt}}) - \operatorname{proj}(\mathbf{M}_{i}, \mathcal{P})\|_{2}^{2}$$

estimated 3D pose ground truth 3D pose

prediction

Gradient with respect to the 3D pose:

$$\begin{pmatrix} \frac{\partial e(\mathcal{P})}{\partial \mathcal{P}} \end{pmatrix} (\mathcal{P}_{curr}) = \sum_{i} \begin{bmatrix} \frac{\partial \operatorname{proj}(\mathbf{M}_{i}, \mathcal{P})}{\partial \mathcal{P}} \end{bmatrix}^{T} \left(\operatorname{proj}(\mathbf{M}_{i}, \mathcal{P}_{gt}) - \operatorname{proj}(\mathbf{M}_{i}, \mathcal{P}_{curr}) \right)$$
analytic predicted

Refinement Progress

3D Annotations are Hard...

Pix3D dataset

How Can We Train a Deep Network for 3D Computer Vision?

1. On annotated real images; *annotation is difficult, time consuming, ..*

Pix3D dataset

2. On synthetic images; domain gap, content creation, ..

Configuration

Semantic labels (C

Structured3D dataset

3. Using self-learning;

cool

How Can We *Evaluate* a Deep Network for 3D Computer Vision?

1. On *accurately* annotated real images;

Proposed Approach

A method for automatically creating a dataset of 3D annotations of real images that we can evaluate;

Automatically Creating a Dataset for 3D Hand+Object Pose Estimation

HOnnotate: A method for 3D Annotation of Hand and Object Poses. Shreyas Hampali, Mahdi Rad, Markus Oberweger, and Vincent Lepetit. CVPR 2020.

Automated Annotations

- 1 or more RGB-D cameras;
- temporal constraints.

Object 3D model from YCB [Xiang et al, 2018]

Bayesian Formulation

$\max_{\{(\mathbf{p}_t^H, \mathbf{p}_t^O)\}_t} \prod_t \prod_c p((I_t^c, D_t^c) \mid \mathbf{p}_t^H, \mathbf{p}_t^O) \ p(\mathbf{p}_{t+1}^H, \mathbf{p}_{t+1}^O \mid \mathbf{p}_t^H, \mathbf{p}_t^O) \ p(\mathbf{p}_t^H, \mathbf{p}_t^O)$

Bayesian Formulation

color image from camera *c* at time *t*

RGBD Likelihood

- Efficient way to deal with occlusions hand/object;
- Gradient computed with differential renderer.

Physical Constraints

$\max_{\{(\mathbf{p}_t^H, \mathbf{p}_t^O)\}_t} \prod_t \prod_c p((I_t^c, D_t^c) \mid \mathbf{p}_t^H, \mathbf{p}_t^O) \ p(\mathbf{p}_{t+1}^H, \mathbf{p}_{t+1}^O \mid \mathbf{p}_t^H, \mathbf{p}_t^O) \ \overline{p(\mathbf{p}_t^H, \mathbf{p}_t^O)}$

joint angle constraints

no intersection constraint

Temporal Constraints

$$\max_{\{(\mathbf{p}_t^H, \mathbf{p}_t^O)\}_t} \prod_t \prod_c p((I_t^c, D_t^c) \mid \mathbf{p}_t^H, \mathbf{p}_t^O) \underbrace{p(\mathbf{p}_{t+1}^H, \mathbf{p}_{t+1}^O \mid \mathbf{p}_t^H, \mathbf{p}_t^O)}_{\text{topporal constraints}} p(\mathbf{p}_t^H, \mathbf{p}_t^O)$$

temporal constraints

simple 0-order motion model

Optimization

 $\max_{\{(\mathbf{p}_t^H, \mathbf{p}_t^O)\}_t} \prod_t \prod_c p((I_t^c, D_t^c) \mid \mathbf{p}_t^H, \mathbf{p}_t^O) \ p(\mathbf{p}_{t+1}^H, \mathbf{p}_{t+1}^O \mid \mathbf{p}_t^H, \mathbf{p}_t^O) \ p(\mathbf{p}_t^H, \mathbf{p}_t^O)$

Negative log:

$$\min_{\{(\mathbf{p}_t^H, \mathbf{p}_t^O)\}_t} \sum_t \sum_c \alpha \|S_t^c - S(\mathbf{p}_t^H, \mathbf{p}_t^O)\|^2 + \beta \|D_t^c - D(\mathbf{p}_t^H, \mathbf{p}_t^O)\|^2 + \gamma E_{\text{joints}}(\mathbf{p}_t^H) + \delta E_{\text{inters}}(\mathbf{p}_t^H, \mathbf{p}_t^O) + \epsilon E_{\text{temp}}(\mathbf{p}_t^H, \mathbf{p}_t^O, \mathbf{p}_{t-1}^H, \mathbf{p}_{t-1}^O, \mathbf{p}_{t+1}^H, \mathbf{p}_{t+1}^O) + \eta E_{3D}(\{D_t^c\}_c, \mathbf{p}_t^H, \mathbf{p}_t^O)$$

Optimized using Adam.

Automated 3D Annotations

Validating our Annotations

Manual annotations of 3D joints on 100 randomly selected time steps;

Done directly on the point cloud created from 4 cameras;

→ Mean error is 8mm with 4 cameras;
→ Mean error is 10mm with 1 camera.

Using our 3D Annotations for Single RGB Frame Prediction

We train a network to predict:

- 2D keypoint locations;
- Root relative joint directions.

+ MANO model fitted to these predictions

Using the Annotations for Single RGB Frame Prediction

(objects are unknown)

3D Scene Understanding from an Image

Alexander Grabner

Sinisa Stekovic

Shreyas Hampali

Madhi Rad

Peter Roth

Friedrich Fraundorfer

Thanks for listening!

Questions?