New registrations are now only available at the conference welcome desk
Although the conference is back to the normal mode (i.e., in-person) speakers are allowed to present remotely if unable to travel to the venue (hybrid support).
Download the Conference App from Play Store or App Store now, to have mobile access to the technical program and also to get notifications and reminders concerning your favorite sessions.
Deep Learning and Big Data Analytics are two major topics of data science, nowadays. Big Data has become important in practice, as many organizations have been collecting massive amounts of data that can contain useful information for business analysis and decisions, impacting existing and future technology. A key benefit of Deep Learning is the ability to process these data and extract high-level complex abstractions as data representations, making it a valuable tool for Big Data Analytics where raw data is largely unlabeled. Machine-learning and artificial intelligence are pervasive in most real-world applications scenarios such as computer vision, information retrieval and summarization from structured and unstructured multimodal data sources, natural language understanding and translation, and many other application domains. Deep learning approaches, leveraging on big data, are outperforming state-of-the-art more “classical” supervised and unsupervised approaches, directly learning relevant features and data representations without requiring explicit domain knowledge or human feature engineering. These approaches are currently highly important in IoT applications.